The Nonlinear Pendulum

Dr Timothy J. Walton

(August 5, 2021)
Consider the motion of a pendulum: a material point of mass m suspended on an inextensible string of length L :

Newton's second law ${ }^{1}$ yields an equation of motion of the pendulum in terms of the angular displacement $\theta(t)$:

$$
\left\{\begin{aligned}
\ddot{\theta}(t)+\omega^{2} \sin (\theta(t)) & =0 \\
\theta(0) & =\theta_{0} \in \mathbb{R} \\
\dot{\theta}(0) & =0
\end{aligned}\right.
$$

where, for simplicity, we have considered the initial angular velocity $\dot{\theta}(t)$ of the pendulum to be zero (i.e. the pendulum is dropped from rest) and we have defined

$$
\omega \equiv \sqrt{\frac{g}{L}} .
$$

Note that values of $\theta_{0}, \theta(t)$ must lie in the interval $[-\pi / 2, \pi / 2]$.
To solve the ODE, we multiply by $\dot{\theta}(t)$:

$$
\dot{\theta}(t) \ddot{\theta}(t)+\omega^{2} \dot{\theta}(t) \sin (\theta(t))=\frac{d}{d t}\left[\frac{1}{2} \dot{\theta}(t)^{2}-\omega^{2} \cos (\theta(t))\right]=0
$$

using the chain rule. Integrating this equation over $[0, t]$ yields:

$$
\begin{aligned}
{\left[\frac{1}{2} \dot{\theta}(t)^{2}-\omega^{2} \cos (\theta(t))\right]_{0}^{t}=0 } & \Longrightarrow \frac{1}{2} \dot{\theta}(t)^{2}-\omega^{2} \cos (\theta(t))+\omega^{2} \cos \left(\theta_{0}\right)=0 \\
& \Longrightarrow \dot{\theta}(t)^{2}=2 \omega^{2}\left[\cos (\theta(t))-\cos \left(\theta_{0}\right)\right]
\end{aligned}
$$

[^0]Using the double angle formula $\cos (\theta(t))=1-2 \sin ^{2}(\theta(t) / 2)$, we write:

$$
\begin{aligned}
\cos (\theta(t))-\cos \left(\theta_{0}\right) & =1-2 \sin ^{2}(\theta(t) / 2)-\cos \left(\theta_{0}\right)=\left(1-\cos \left(\theta_{0}\right)\right)\left(1-\frac{2 \sin ^{2}(\theta(t) / 2)}{1-\cos \left(\theta_{0}\right)}\right) \\
& =2 \sin ^{2}\left(\theta_{0} / 2\right)\left(1-\frac{2 \sin ^{2}(\theta(t) / 2)}{1-\cos \left(\theta_{0}\right)}\right)=2 \sin ^{2}\left(\theta_{0} / 2\right)\left(1-\frac{\sin ^{2}(\theta(t) / 2)}{\sin ^{2}\left(\theta_{0} / 2\right)}\right) \\
& =2 k\left(1-\frac{\sin ^{2}(\theta(t) / 2)}{k^{2}}\right)
\end{aligned}
$$

where we have introduced the variable

$$
k \equiv \sin \left(\theta_{0} / 2\right)
$$

and used $1-\cos \left(\theta_{0}\right)=2 \sin ^{2}\left(\theta_{0} / 2\right)$. Note the value of k depends upon the initial condition and must lie in the interval $[0, \pi / 4]$ (since $\theta \in[0, \pi / 2]$). Thus, we have the differential equation:

$$
\dot{\theta}(t)^{2}=4 \omega^{2} k^{2}\left(1-\frac{\sin ^{2}(\theta(t) / 2)}{k^{2}}\right) \Longrightarrow \frac{\dot{\theta}(t)}{2 k}=\omega \sqrt{1-\frac{\sin ^{2}(\theta(t) / 2)}{k^{2}}}
$$

We wish to find the period of oscillation of the pendulum from this differential equation. We note from the initial conditions the pendulum is at an angle $\theta=\theta_{0}$ and at some (later) time, we must have $\theta=0$ when it passes the lowest point of its arc (we must now assume $\theta_{0}>0$). The time it takes the pendulum to travel between these two points is equivalent to one quarter of the time period, T. That is:

$$
\frac{T}{4}=\int_{\theta=0}^{\theta_{0}} \frac{d t}{d \theta} d \theta \quad \Longrightarrow \quad T=4 \int_{\theta=0}^{\theta_{0}} \frac{d \theta}{\dot{\theta}(t)}=4 \int_{\alpha=0}^{\pi / 2} \frac{d \alpha}{\dot{\alpha}(t)}
$$

in terms of a new angle variable $\alpha(t)$ defined by:

$$
\sin (\alpha(t)) \equiv \frac{\sin (\theta(t) / 2)}{k}=\frac{\sin (\theta(t) / 2)}{\sin \left(\theta_{0} / 2\right)}
$$

which, as $\theta(t)$ varies over the interval $\left[0, \theta_{0}\right]$, varies over $[0, \pi / 2]$. Differentiating the relation with respect to t gives:

$$
\dot{\alpha}(t) \cos (\alpha(t))=\frac{\dot{\theta}(t) \cos (\theta(t) / 2)}{2 k}
$$

or using $\cos (\theta(t) / 2)=\sqrt{1-\sin ^{2}(\theta(t) / 2)}=\sqrt{1-k^{2} \sin ^{2}(\alpha(t))}$:

$$
\frac{\dot{\theta}(t)}{2 k}=\frac{\dot{\alpha}(t) \cos (\alpha(t))}{\cos (\theta(t) / 2)}=\frac{\dot{\alpha}(t) \cos (\alpha(t))}{\sqrt{1-k^{2} \sin ^{2}(\alpha(t))}}
$$

Thus, the differential equation becomes:

$$
\frac{\dot{\alpha}(t) \cos (\alpha(t))}{\sqrt{1-k^{2} \sin ^{2}(\alpha(t))}}=\omega \sqrt{1-\sin ^{2}(\alpha(t))}=\omega \cos (\alpha(t))
$$

or after rearranging:

$$
\dot{\alpha}(t)=\omega \sqrt{1-k^{2} \sin ^{2}(\alpha(t))}
$$

Hence the time period can be written:

$$
T=\frac{4}{\omega} \int_{\alpha=0}^{\pi / 2} \frac{d \alpha}{\sqrt{1-k^{2} \sin ^{2}(\alpha)}}=\frac{4 K(k)}{\omega}
$$

in terms of the complete elliptic integral of the first kind K with modulus k. Recall that $k \in$ $(0, \pi / 4)$ which is a valid parameter range for the elliptic integral and implies the integrand will not go singular. Since the (generalised binomial) series ${ }^{2}$

$$
\begin{aligned}
\frac{1}{\sqrt{1-x}} & =(1-x)^{-\frac{1}{2}}=\sum_{j=0}^{\infty}\binom{-1 / 2}{j}(-x)^{j}=1+\sum_{j=1}^{\infty}\binom{-1 / 2}{j}(-x)^{j} \\
& =1+\sum_{j=1}^{\infty}(-1)^{j}\left(\prod_{i=1}^{j} \frac{1 / 2-i}{i}\right) x^{j}=1+\sum_{j=1}^{\infty}(-1)^{j}\left(\prod_{i=1}^{j} \frac{1-2 i}{2 i}\right) x^{j}
\end{aligned}
$$

is convergent ${ }^{3}$ for $x \in(0,1)$, we may write

$$
\begin{equation*}
\frac{1}{\sqrt{1-k^{2} \sin ^{2}(\alpha)}}=1+\sum_{j=1}^{\infty}(-1)^{j}\left(\prod_{i=1}^{j} \frac{1-2 i}{2 i}\right) k^{2 j} \sin ^{2 j}(\alpha) \tag{1}
\end{equation*}
$$

since $k^{2} \sin (\alpha) \in\left(0, \pi^{2} / 16\right) \subset(0,1)$ for all α. Furthermore

$$
\begin{aligned}
\int_{\alpha=0}^{\pi / 2} \sin ^{2 n}(\alpha) d \alpha & =\left(\frac{2 n-1}{2 n}\right) I_{2 n-2}=\left(\frac{2 n-1}{2 n}\right)\left(\frac{2 n-3}{2 n-2}\right) I_{2 n-4}=\left(\frac{2 n-1}{2 n}\right)\left(\frac{2 n-3}{2 n-2}\right) \cdots\left(\frac{1}{2}\right) I_{0} \\
& =\frac{\pi}{2} \prod_{k=1}^{n} \frac{2 k-1}{2 k}
\end{aligned}
$$

using the reduction formula ${ }^{4}$

$$
I_{n} \equiv \int_{\alpha=0}^{\pi / 2} \sin ^{n}(\alpha) d \alpha=\left(\frac{n-1}{n}\right) I_{n-2}, \quad I_{0}=\int_{\alpha=0}^{\pi / 2} d \alpha=\frac{\pi}{2} .
$$

Thus, due to the uniform convergence ${ }^{5}$ of the series (1), we have a power series expansion of the

[^1]complete elliptic integral of the first kind:
\[

$$
\begin{aligned}
K(k) & =\int_{\alpha=0}^{\pi / 2} \frac{d \alpha}{\sqrt{1-k^{2} \sin ^{2}(\alpha)}}=\int_{\alpha=0}^{\pi / 2}\left(1+\sum_{j=1}^{\infty}(-1)^{j}\left(\prod_{i=1}^{j} \frac{1-2 i}{2 i}\right) k^{2 j} \sin ^{2 j}(\alpha)\right) d \alpha \\
& =\int_{\alpha=0}^{\pi / 2} d \alpha+\sum_{j=1}^{\infty}(-1)^{j}\left(\prod_{i=1}^{j} \frac{1-2 i}{2 i}\right) k^{2 j} \int_{\alpha=0}^{\pi / 2} \sin ^{2 j}(\alpha) d \alpha \\
& =\frac{\pi}{2}+\sum_{j=1}^{\infty}(-1)^{j}\left(\prod_{i=1}^{j} \frac{1-2 i}{2 i}\right) k^{2 j} \cdot\left(\frac{\pi}{2} \prod_{i=1}^{j} \frac{2 i-1}{2 i}\right) \\
& =\frac{\pi}{2}+\frac{\pi}{2} \sum_{j=1}^{\infty}\left(\prod_{i=1}^{j}(-1)\right)\left(\prod_{i=1}^{j} \frac{1-2 i}{2 i}\right)\left(\prod_{i=1}^{j} \frac{2 i-1}{2 i}\right) k^{2 j}=\frac{\pi}{2}\left[1+\sum_{j=1}^{\infty}\left(\prod_{i=1}^{j} \frac{2 i-1}{2 i}\right)^{2} k^{2 j}\right] .
\end{aligned}
$$
\]

It can be checked (using the ratio test, for example) that the series in the expansion above converges absolutely for all $k \in[0,1)$. Thus, we may write the time period of our pendulum as

$$
T=\frac{4 K(k)}{\omega} K=\frac{2 \pi}{\omega}\left[1+\sum_{j=1}^{\infty}\left(\prod_{i=1}^{j} \frac{2 i-1}{2 i}\right)^{2} k^{2 j}\right]
$$

or, after restoring variables and expanding:

$$
T=2 \pi \sqrt{\frac{L}{g}}\left[1+\sum_{j=1}^{\infty}\left(\prod_{i=1}^{j} \frac{2 i-1}{2 i}\right)^{2} \sin ^{2 j}\left(\frac{\theta_{0}}{2}\right)\right]
$$

using $\omega=\sqrt{g / L}$ and $k=\sin \left(\theta_{0} / 2\right)$. We recognise the first term as the known formula for the period of a pendulum with small oscillations.

[^0]: ${ }^{1}$ Consider tangential forces: $F=-m g \sin (\theta(t))$ due to the weight of the mass.

[^1]: ${ }^{2}$ Here we use the generalised binomial coefficients $\binom{\alpha}{k}=\frac{\alpha(\alpha-1) \cdots(\alpha-k+1)}{k(k-1) \cdots 1}=\prod_{i=1}^{k} \frac{\alpha-i+1}{i}$.
 ${ }^{3}$ This series converges absolutely on $(0,1)$ and uniformly on $(0, \rho]$ for $0<\rho<1$ by the Weierstrass M-test.
 ${ }^{4}$ The reduction formula can be proved by a simple application of integration by parts
 ${ }^{5}$ This permits us to interchange summation and integration.

