
The Nonlinear Pendulum

Dr Timothy J. Walton

(August 5, 2021)

Consider the motion of a pendulum: a material point of mass m suspended on an inextensible
string of length L:

θθθ LLL

mmm

Newton’s second law1 yields an equation of motion of the pendulum in terms of the angular
displacement θ(t): 

θ̈(t) + ω2 sin( θ(t) ) = 0

θ(0) = θ0 ∈ R

θ̇(0) = 0

where, for simplicity, we have considered the initial angular velocity θ̇(t) of the pendulum to be
zero (i.e. the pendulum is dropped from rest) and we have defined

ω ≡
√

g

L
.

Note that values of θ0, θ(t) must lie in the interval [−π/2, π/2].

To solve the ODE, we multiply by θ̇(t):

θ̇(t) θ̈(t) + ω2θ̇(t) sin( θ(t) ) =
d

dt

[
1

2
θ̇(t)2 − ω2 cos( θ(t) )

]
= 0

using the chain rule. Integrating this equation over [0, t] yields:[
1

2
θ̇(t)2 − ω2 cos( θ(t) )

]t
0

= 0 =⇒ 1

2
θ̇(t)2 − ω2 cos( θ(t) ) + ω2 cos(θ0) = 0

=⇒ θ̇(t)2 = 2ω2
[
cos( θ(t) )− cos(θ0)

]
.

1Consider tangential forces: F = −mg sin( θ(t) ) due to the weight of the mass.
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Using the double angle formula cos( θ(t) ) = 1− 2 sin2(θ(t)/2), we write:

cos( θ(t) )− cos(θ0) = 1− 2 sin2(θ(t)/2)− cos(θ0) =
(
1− cos(θ0 )

)(
1− 2 sin2(θ(t)/2)

1− cos(θ0)

)
= 2 sin2(θ0/2)

(
1− 2 sin2(θ(t)/2)

1− cos(θ0)

)
= 2 sin2(θ0/2)

(
1− sin2(θ(t)/2)

sin2(θ0/2)

)
= 2k

(
1− sin2(θ(t)/2)

k2

)
where we have introduced the variable

k ≡ sin(θ0/2)

and used 1− cos(θ0) = 2 sin2(θ0/2). Note the value of k depends upon the initial condition and
must lie in the interval [0, π/4] (since θ ∈ [0, π/2]). Thus, we have the differential equation:

θ̇(t)2 = 4ω2k2
(
1− sin2(θ(t)/2)

k2

)
=⇒ θ̇(t)

2k
= ω

√
1− sin2(θ(t)/2)

k2
.

We wish to find the period of oscillation of the pendulum from this differential equation. We note
from the initial conditions the pendulum is at an angle θ = θ0 and at some (later) time, we must
have θ = 0 when it passes the lowest point of its arc (we must now assume θ0 > 0). The time
it takes the pendulum to travel between these two points is equivalent to one quarter of the time
period, T . That is:

T

4
=

∫ θ0

θ=0

dt

dθ
dθ =⇒ T = 4

∫ θ0

θ=0

dθ

θ̇(t)
= 4

∫ π/2

α=0

dα

α̇(t)
.

in terms of a new angle variable α(t) defined by:

sin(α(t) ) ≡ sin(θ(t)/2)

k
=

sin(θ(t)/2)

sin(θ0/2)

which, as θ(t) varies over the interval [0, θ0], varies over [0, π/2]. Differentiating the relation with
respect to t gives:

α̇(t) cos(α(t) ) =
θ̇(t) cos(θ(t)/2)

2k

or using cos(θ(t)/2) =
√
1− sin2(θ(t)/2) =

√
1− k2 sin2(α(t) ):

θ̇(t)

2k
=

α̇(t) cos(α(t) )

cos(θ(t)/2)
=

α̇(t) cos(α(t) )√
1− k2 sin2(α(t) )

.

Thus, the differential equation becomes:

α̇(t) cos(α(t) )√
1− k2 sin2(α(t) )

= ω

√
1− sin2(α(t) ) = ω cos(α(t) )
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or after rearranging:

α̇(t) = ω

√
1− k2 sin2(α(t) ).

Hence the time period can be written:

T =
4

ω

∫ π/2

α=0

dα√
1− k2 sin2(α)

=
4K(k)

ω

in terms of the complete elliptic integral of the first kind K with modulus k. Recall that k ∈
(0, π/4) which is a valid parameter range for the elliptic integral and implies the integrand will not
go singular. Since the (generalised binomial) series2

1√
1− x

= (1− x)−
1
2 =

∞∑
j=0

(
−1/2

j

)
(−x)j = 1 +

∞∑
j=1

(
−1/2

j

)
(−x)j

= 1 +
∞∑
j=1

(−1)j

(
j∏

i=1

1/2− i

i

)
xj = 1 +

∞∑
j=1

(−1)j

(
j∏

i=1

1− 2i

2i

)
xj

is convergent3 for x ∈ (0, 1), we may write

1√
1− k2 sin2(α)

= 1 +
∞∑
j=1

(−1)j

(
j∏

i=1

1− 2i

2i

)
k2j sin2j(α) (1)

since k2 sin(α) ∈ (0, π2/16) ⊂ (0, 1) for all α. Furthermore∫ π/2

α=0
sin2n(α) dα =

(
2n− 1

2n

)
I2n−2 =

(
2n− 1

2n

)(
2n− 3

2n− 2

)
I2n−4 =

(
2n− 1

2n

)(
2n− 3

2n− 2

)
· · ·
(
1

2

)
I0

=
π

2

n∏
k=1

2k − 1

2k

using the reduction formula4

In ≡
∫ π/2

α=0
sinn(α) dα =

(
n− 1

n

)
In−2, I0 =

∫ π/2

α=0
dα =

π

2
.

Thus, due to the uniform convergence5 of the series (1), we have a power series expansion of the

2Here we use the generalised binomial coefficients

(
α

k

)
=

α(α− 1) · · · (α− k + 1)

k(k − 1) · · · 1 =

k∏
i=1

α− i+ 1

i
.

3This series converges absolutely on (0, 1) and uniformly on (0, ρ] for 0 < ρ < 1 by the Weierstrass M-test.
4The reduction formula can be proved by a simple application of integration by parts
5This permits us to interchange summation and integration.
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complete elliptic integral of the first kind:

K(k) =

∫ π/2

α=0

dα√
1− k2 sin2(α)

=

∫ π/2

α=0

1 +

∞∑
j=1

(−1)j

(
j∏

i=1

1− 2i

2i

)
k2j sin2j(α)

 dα

=

∫ π/2

α=0
dα+

∞∑
j=1

(−1)j

(
j∏

i=1

1− 2i

2i

)
k2j
∫ π/2

α=0
sin2j(α)dα

=
π

2
+

∞∑
j=1

(−1)j

(
j∏

i=1

1− 2i

2i

)
k2j ·

(
π

2

j∏
i=1

2i− 1

2i

)

=
π

2
+

π

2

∞∑
j=1

(
j∏

i=1

(−1)

)(
j∏

i=1

1− 2i

2i

)(
j∏

i=1

2i− 1

2i

)
k2j =

π

2

1 + ∞∑
j=1

(
j∏

i=1

2i− 1

2i

)2

k2j

 .

It can be checked (using the ratio test, for example) that the series in the expansion above
converges absolutely for all k ∈ [0, 1). Thus, we may write the time period of our pendulum as

T =
4K(k)

ω
K =

2π

ω

1 + ∞∑
j=1

(
j∏

i=1

2i− 1

2i

)2

k2j


or, after restoring variables and expanding:

T = 2π

√
L

g

1 + ∞∑
j=1

(
j∏

i=1

2i− 1

2i

)2

sin2j
(
θ0
2

)
using ω =

√
g/L and k = sin(θ0/2). We recognise the first term as the known formula for the

period of a pendulum with small oscillations.
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